At maximum available power, an electric motor/propeller combination is measured to have a thrust of $T=1.5\,\mathrm{N}$. An electric aircraft which is to use this powerplant has the following characteristics:

$$W = 3 \text{ N}$$

$$S = 0.30 \text{ m}^{2}$$

$$CDA_{o} = 0.005 \text{ m}^{2}$$

$$c_{d} = 0.02$$

$$b = 1.8 \text{ m}$$

$$e = 0.95$$

$$c_{\ell_{\text{max}}} = 0.8$$

The aircraft operates at air density $\rho = 1.2 \text{ kg/m}^3$.

- a) Determine the minimum sustainable flight speed V_{\min} .
- b) Determine $D_o(V)$, $D_p(V)$, $D_i(V)$, and the total D(V). Plot all four curves on the same plot, from $V = V_{\min}$ to $V = 20 \,\mathrm{m/s}$. Also overlay the constant T on this plot.
- c) Determine the maximum flight speed $V_{\rm max}$ of the aircraft. Determine the corresponding flight C_L at this speed.